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A compact (streamwise scale small compared with characteristic length) pressure 
distribution, which models a ship and is equivalent to a compact bottom deformation 
of cross-sectional area A, exerts a net vertical force pgA on, and advances with speed 
U over, the free surface of a shallow canal of upstream depth H. The hypotheses of 
weak dispersion, weak nonlinearity and steady, two-dimensional flow in the reference 
frame of the force yield, through a generalization of Rayleigh’s (1876) formulation 
of the (free) solitary-wave problem, a cnoidal wave downstream of the force matched 
to a null solution on the upstream side if IA I/H2 < i (1  -F2)t Q 1 (Cole 1980) or 
a cusped solitary wave if I A I/fP < i (F2 -  1): Q 1, where F = U / ( g H ) t  is the Froude 
number. The hypothesis of steady flow presumably fails in the transcritical range 
1 - (9A/2H2F < F2 < 1 + (9A/4H2)1, at least under the restrictions of weak dispersion 
and weak nonlinearity. Comparisons with experiment and numerical solutions of the 
nonlinear initial-value problem provide some confirmation of the cusped solitary 
wave but suggest that the cnoidal wave may be unstable in the absence of dissipation. 

1. Introduction 
I consider here the transcritical flow induced by a two-dimensional, compact 

pressure distribution that exerts a net vertical force P (per unit breadth) on, and 
advances with uniform speed U over, the surface of a perfect fluid of uniform density 
p and upstream depth H, as in the investigations of Huang et al. (1982), Wu & Wu 
(1982), Akylas (1984), Ertekin (1984), Ertekin, Webster t Wehausen (1984), and Cole 
(1985b). It appears from these investigations that if the Froude number 

F = (gH)-? U (1.1) 

is in some transcritical range a periodic sequence of solitons propagates upstream of 
the force? at supercritical speed, and the flow then is intrinsically unsteady. If F - 1 
is not small breaking occurs, and a bore appears upstream of the force. If F < 1 a 
periodic wavetrain appears behind the force, as in the case of a weak bore (Benjamin 
& Lighthill 1954). The calculations of Wu t Wu (1982) and Ertekin (1984) suggest 
the existence of a lower critical value of F,  f,, below which this wavetrain is 
asymptotically (in time) stationary in the reference frame of the force and the 
upstream solitons are transient, but the experimental evidence suggests that some 
unsteadiness may persist for any subcritical F (although i t  should be emphasized that 
the theoretical formulations may be valid only for much smaller values of P/pgW 
than those realized in the experiments). The calculations of Wu t Wu (1982) also 
suggest the existence of an upper critical value of F,  F,, above which the disturbance 

t I now use ‘force’ to refer, somewhat loosely, to either the pressure distribution or its integrated 
vertical component P.  
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resembles a single solitary wave that is stationary in the moving reference frame of 
the force, but the upstream-soliton regime in the experiments of Ertekin et al. is 
terminated by breaking and the appearance of an upstream bore. 

Theoretical considerations imply that disturbances similar to those induced by a 
moving force occur for flow over a horizontally compact, transverse bump of 
cross-sectional area A = P/pg ( A  < 0 for a depression) on the bottom of a running 
stream; cf. Lamb (1932, $5177 and 24,5249), Ertekin (1984) and Cole (1985~) .  

Against this background, I postulate the existence, in some range(s) o f f ,  of steady, 
two-dimensional flow induced by a moving pressure distribution on the surface, or 
a transverse obstacle on the bottom, of a running stream. The corresponding linear 
problems were solved originally by Kelvin (1886) and are treated in detail by Lamb 
(1932, $9245-249). The nonlinear problem for 0 < 1 - F 6 1 has been solved by 
J. D. Cole (1980), who matched the (inner) solution of the linear problem to the (outer) 
solution of the first-order, nonlinear differential equation that governs the down- 
stream wavetrain and obtained an implicit result for F,. The nonlinear problem for 
0 < F-1 4 1 has been examined by S. L. Cole (1983), using matched asymptotic 
expansions; however, her end results are in error in consequence of an incorrect 
matching condition (S. L. Cole, private communication). 

My basic assumptions, in addition to those in the opening sentence, are 

F = 1 +O(a), (1.2~2, b,  c, d )  

h N h ( X -  [I t )  G h ( z )  ( t f  00) (1.3) 

and h ( z )  - H (z f  001, (1.4) 

where h is the local depth, L is a characteristic wavelength, a is a measure of 
nonlinearity, /3 is a measure of dispersion, and X ( z )  is directed upstream in the 
laboratory (moving) reference frame. The double limit t l .  00, z f 00 is not, in general, 
commutative, and H may differ from the initial depth, say h,, in consequence of a 
transient surge of elevation H -  h, that  moves ahead of P with the relative velocity 
(gh,)?- U if F < 1 (Benjamin 1970); see 54. However,. (1.4) rules out an upstream 
wavetrain, which hypothesis is consistent) with the known results of linearized theory 
[Lamb 1932, 5245; Wurtele 19551 and numerical solutions of the initial-value 
problem based on the Boussinesq equations for F > Fu (Wu & Wu 1982), but is 
contradicted by the aforementioned experiments and by numerical solutions of the 
Green-Naghdi equations for F < 1 (Wehausen & Ertekin, private communication) 
and of the inhomogeneous Korteweg-dc Vries equation for ( F2 - 1)/& = 2 and - 3 
(Akylas, private communication). This suggests that, in the absence of dissipation, 
the solutions to be obtained here may be either unstable (although small dissipation 
might render them stable) or attainable only after rather long times. 

The hypotheses (1.3) and (1.4) permit the reduction of the equations of motion to 
a nonlinear differential equation for h. I follow Rayleigh’s (1876) formulation of 
the solitary-wave problem for this reduction ($2) ; alternative formulations follow 
from the Boussinesq (Wu & Wu 1982). Green-Naghdi (Ertekin 1984; Naghdi 6 
Vongsarnpigoon 1985), or (forced) Korteweg-de Vries (Akylas 1984) equations, from 
the method of matched asymptotic expansions (Cole 1980), and from Hamilton’s 
principle (Appendix A).  The analytical solution of this differential equation, subject 
to the requirement that the wave drag he non-negative, for F < 1 ($4) yields a cnoidal 
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wavetrain downstrea.m, matched to  a null solution (h = H )  upstream, of the force if 
and only if (Cole 1980)t 

8 < t (  1 - F2)t. 

The solution for F > 1 ( $ 5 )  yields a cusped solitary wave (the cusp is convex/concave 
for A 2 0) if and only if 

8 < t(F2- 1):. (1-6) 

The corresponding bounds for stationary, transcritical flow are 

F; = 1 -(+)a, F; = 1 + ($)i (8 < 1) .  (1.7a, b)  

The corresponding wave drag is 

for F < F, and vanishes for ff > F,. 
The downstream cnoidal wave that appears for ff < 1 reduces to a sine wave 

in the limit (1 -F2 ) - te+0  and to  a transition t o  a uniform supercritical flow 
through a truncated solitary wave for (1  - F2)-t 8 = 5, i.e. for F = F,. The mean eleva- 
tion is decreased for all cnoidal wavetrains in the lower transcritical regime 
(1-Fl < l - F  < l ) ,  and the downstream Froude number tends to l/Fl as F tends 
to F,. This last result is confirmed in Appendix C through a straightforward balance 
of mass, impulse-momentum (which is decreased by wave drag) and energy. 

2. Extension of Rayleigh’s formulation 
Following Rayleigh’s (1  876) formulation of the solitary-wave problem (Lamb 1932, 

$252),$ we consider a steady flow in a reference.frame moving with the force P, in 
which the upstream (z.f GO) depth and velocity are H and ( -  U ,  0), and derive the 
local velocity q from a stream function $ according to  

4 = (-$p $ X L  (2.1) 

where (2, y )  are Cartesian coordinates with origin a t  the bottom of the canal directly 
below P. The assumption of an inviscid, irrotational flow between the bottom (y = 0) 
and the free surface ( y  = h) then implies the kinematical boundary-value problem 

lkX,+ $yu = 0 (0 < Y -= h) ,  ( 2 . 2 ~ )  

+ =  0 ( y =  0 ) ,  $ = U H E Q  ( y  = h) .  (2.2b, c )  

The corresponding Bernoulli equation a t  the free surface is 

(2.3) 

where q = I q 1, p is the superficial pressure (which is assumed to vanish at z = a), 
and p is the fluid density. 

t WU & Wu (1982) and Ertekin (1984) obtain stationary, downstream wavetrains for d < 1 
through numerical integration of the Boussinesq and Green-Naghdi equations, respectively. 
Ertekin (see his figure 16) obtains the critical value F = 0.5 for E = 0.25, which corresponds to (1.5) 
with $ replaced by 0.26. The difference between these last two numbers presumably stems from 
the retention of full nonlinearity in the Green-Naghdi model (see Appendix B).  

$ The development in this section is similar to that of Benjamin & Lighthill (1954) but provides 
for the superficial pressure p .  

P 
P 

h 2 + g h + -  = !jU2+gH ( y  = h) ,  



492 J .  W .  Miles 

The solution of (2.2a, b)  may be posed in the form 

V+ = qo(x) ~ - h L ( x )  y3 + O(P’Q), (2.4) 

where q,,(x) (=  F in Lamb’s notation) is the particle speed at y = 0, ( )’ = d( )/dx, 
and /3 = ( H / J ~ ) ~ .  It then follows from ( 2 . 2 ~ )  that 

qo = Q { 1 + {h2 [ &] + 0 ( / 3 2 ) }  h-1. 

Combining (2.1), (2.4) and (2.5) to  express q2 in (2.3) in terms of h and invoking 
h” = h’(dh’/dh), we obtain? 

+gh+-  P = g P + g H .  
P 

Integrating (2.6) with respect to h and invoking h = H a t  x = 00, we obtain the 

+1Smph’ dx, 
Q2h’2 ( U2 - gh) ( h  - H ) 2  energy equation 

- - 
6h 2h P x  

which reduces to Lamb’s (1932) $252 (8) for p = 0. The derivation of (2.6) and (2.7) 
from Hamilton’s principle is given in Appendix A. 

The vertically averaged, horizontal velocity deduced from (2.1) and (2.2) in the 
reference frame of the moving force is (positive to the left) 

Q h 
u = @’udy = % .  

h a  

The corresponding, local Froude number is 

3. Compact forcing 
We now suppose that the horizontal scale of p is small compared with the 

characteristic length L. The integral in (2.7) then may be approximated according 
to 

00 

ph’dx z H( -2) ph’dx = DH( -x), (3.1) I: --oo 

where H i s  Heaviside’s step function and D is the wave drag, and (2.7) transforms 

where C+(h) and C-(h)  are cubic polynomials. It may be shown that (3.1), (3.2) and 
the subsequent results also hold for an equivalent bump of height plpg and horizontal 
lengthscale small compared with L. 

It follows from (3.1) that, to the same approximation, 

D = :P(h;- +hi+), (3.3) 

t Equation (2.6) is equivalent to Ertekin’s (1984) ‘Green-Naghdi equation’ (5.25) after 
= F therein. See also Naghdi & Vongsampigoon’s (1985) (2.3), which invoking o+ii = F H / h  and 

allows for variable depth. 
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where P = pgA is the net vertical force exerted by p ,  A is the cross-sectional area 
of the equivalent bump, and the subscript O +  signifies evaluation a t  x = O +  . 
Differencing (3.2) across x = 0 and comparing the result with (3.3), we obtain the 

D = &@2h,'(hz-hz), P = &XJ2h~'(hi--h;+). (3.4a, b )  identities 

4. Cnoidal waves (f < 1) 

The admissible solutions of (3.2), subject to (1.4), depend on the disposition of the 
zeros of C,(h) in x 0 (cf. Benjamin & Lighthill 1954). If F < 1 the simple zero of 
C+ at h = U 2 / g  = F2H lies to the left of the double zero at h = H, in consequence 
of which the only non-trivial, bounded solution of (3.2) and (1.4) in x > 0 is h = H. 
It then follows that h, = Hand hi+ = 0, and the elimination of hi- between (3.4a, b )  
on the hypothesis that a non-trivial solution exists in x < 0 yields 

This last result also may be deduced from the linear theory by letting a = K h + O  in 
Lamb's (1932) $245 (9), (19), (24) and $249 (3). 

Cnoidal solutions of (3.2) exist in x < 0 if and only if C-(h) has three real zeros, 
which limits the parametric domain of E and F (see Appendix B). Moreover, the 
antecedent requirement that dispersion be weak (B 4 1 in $2) is satisfied for these 
cnoidal waves if and only if 0 < 1 - F2 4 1, in which domain both p and (h- H)/H 
are O(1- F2) ,  E = 0[( 1 - F2))t], and the condition that the three zeros be real reduces 
to (1.5) or, equivalently, I w I < 3 ,  where 

a =  1-F2-g 1 ,  (4.2a, 6 )  

The construction of the cnoidal solutions for 1 w I < f is straightforward ; however, 
I consider further only the limiting cases I w I $0 and I m 1 fi. 

Introducing the dimensionless, O( 1 ) variables 

f = - - -  (3a)ix - x h-H 
2fH - L '  q ( f ) = = ?  

invoking (4.2a), solving the resulting reduction of (3.2) subject to 

h = H and sgnh' = sgnP at x = 0 - ,  

(4.3a, b)  

and expanding the result about ar = 0, we obtain 

7 = 4 3  w ~ i n 2 6 + @ ~ ( - 3 + 4  cos2~-cos4f)+O(w3) (6 < 0). (4.4) 

The leading term in (4.4), 1/3 w sin26, corresponds to linear theory with weak 
dispersion and may be obtained from Lamb's (1932) $245 (6) by approximating 
kh cothkh by 1 +f(kh)2 therein (Lamb's h = H in the present notation). The mean 
value, (7) = -:a2, agrees with that predicted by Benjamin (1970), wherein 
(Benjamin-+Miles) a/h, = 3am, ~ h ,  = (3a)i, y = l-a, a+ = $zw2, 6, = -iaw2, 
S- = -&a3w2, &-S+ = a(q), all within 1 +O(a),  and 

h, = H(l -a+) = H(l -$ad)  (4.5) 

is the initial (t = 0) depth. Benjamin's upstream velocity ( U  in his notation) and 
upstream Froude number are U( 1 + :am2) and F (  1 + faw2) in the present notation. 
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Note that Benjamin’s calculation, being based on a sinusoidal wavetrain, is valid only 
for la1 <:. 

The limiting solution for 1 m I = $ is given by 

7 = -%+sech2(t0-E) (6  < 0 ) ,  to = +(sgnm) ln(2+1/3). (4.6a, b )  

The limiting (6.1-m) depth, velocity (positive to the left) in the reference frame of 
the force, and Froude number are 

1 
F 

h- = H(l-$a), u-=  U(l+fa),  F-  = F(l+-a) =-  (4.7a, b , ~ )  

to first order in a, and (4.6) describes a transition from a uniform, subcritical (f < 1) 
flow to a uniform, supercritical (1/F > 1 )  flow through a truncated solitary wave. 
An alternative derivation of (4.7) is given in Appendix C. 

5. Cusped solitary waves (f > 1) 

If F > 1 C- has only one zero for I> > 0, in consequence of which (3.2) and (1.4) 
admit a non-trivial solution only if D = 0 ( D  < 0 is physically inadmissible). It then 
is expedient to introduce 6 and 7 from (4.3), but with 

a =  F2-1 
in place of (4.2a), to  reduce (3.2) to  

i r ’ 2  = 2- 3. 7 7  
The corresponding boundary conditions, obtained by transforming (1.4) and (3.4b), 

7 + 0  (Er a), 7;--7;+ = 2 d 3  m. (5.3a, b )  are 

[(l + q 0 ) / ( 1  +a) has been approximated by 1 in reducing (3.4b) to  (5 .3b) ,  which is 
consistent with the approximation of weak dispersion, as in $4; see Appendix B.] 

The only non-trivial solution of (5.2) and (5.3) is given by the symmetrical, cusped 
solitary wave (see figure 1 )  

where 5, is determined by 
(5.4) 

sech2 Eo = v0, ~,$(l -v0)  = im2, sgnt, = sgna .  (5.5a, b,  c) 

The cusp is convex/concave for a 3 0. The convexly cusped solitary wave for a3 > 0 
(figure la )  resembles the asymptotic ( t t c o )  results obtained by Wu & Wu (1982) 
through numerical integration of the Boussinesq equations with F = 1.2 and 1.4. The 
corresponding comparison for a < 0 is less satisfactory in that the numerical 
results do not exhibit a concave centre (figure i b ) .  

It follows from (5.5b) that:  the solution (5.4) is admissible if and only if I m 1 < t ,  
which implies the restriction (1.6) ; two such solutions are possible, with peak values 
that lie in (0, f )  and (i, 1 )  respectively, for each value of I m I in (0, i). The local Froude 
number, as calculated from (2.9), is 

7 = sech2(1E1 + E O L  

FII = 1 + $ ~ ( 1 - 3 ~ ) + O ( a ~ )  (5.6) 

and has a minimum (at 
at v0 = 0 (m = 0) through 1-$a = 1/F at  yo = f (a = i) to l--a at q0 = 1 (a = 0). 

(Lamb (1932, §177),  yields 

= 0) for the convexly cusped wave that decreases from 1 +$a 

The limit r o $ + d 3  a $ 0 (Eo f co), which corresponds to linear, shallow-water theory 

7 = $ 4 3  n e-2151 ( ~ $ 0 ) .  (5.7) 
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c 
FIQIJRE 1. The cusped solitary wave: (a)  to = 0 (---), to = 1 (-); ( b )  Eo = - 1. 

The limit w t 0, for which the maximum displacement remains 7 = 1 a t  I[ I = I lo 1, 
is inaccessible through linear theory, which implies 7 < 0 for w < 0; this suggests that 
the concavely cusped solitary wave may be either unstable or unrealizable in a real 
fluid. 

The limit 1 - 7l0 J. @2 J. 0 ( I lo 1 + O )  yields the free solitary wave 

7 = sech2E (w = 0). (5.8) 

A convincing determination of which of the two solitary waves admitted by (5.5) 
is realized for I w I < presumably requires the solution of the corresponding 
initial-value problem (or a stability analysis) and is beyond the purview of the 
steady-state model (in particular, the limits t t 00 and w J. 0 may not be commutative). 
The analogy with weak and strong shock waves in a gas suggests that the weaker 
solution would be realized for w > 0, at least for motion starting from rest, but the 
fact that the free solitary wave (5.8) can exist renders this argument less than 
compelling. 

The dimensionless volumetric displacement implied by (5.4) is 
m 

?I d6 = 2( 1 - tanh to), 
-m 

(5.9) 

which presumably is balanced by a disturbance of net negative volumetric displace- 
ment that moves to [ = - 00 (downstream of the moving force) during the evolution 
of (5.4) from a configuration of rest (7 = 0). This balancing disturbance could be of 
infinitesimal amplitude and infinite extent. 
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helpful discussions and for providing me with results of work in progress. This work 
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Appendix A. Lagrangian formulation 
The Lagrangian for the steady flow postulated in $2  is given by 

02 

L = T - V + W = J  --m Y p d x ,  

where 

is the kinetic energy in the laboratory reference frame, 

fa 

V=+pgJ ( h - H ) 2 d x  
-m ._ 

is the potential energy, Ot 

W = -1 p ( h - H )  dx 
--m 

is the work done by the superficial pressure, and 8 is the Lagrangian density. 

with respect to y, and neglecting 0(pz ) ,  we obtain 
Substituting $ from (2 .4)  into (A 2 ) ,  invoking (2 .5) ,  carrying out the integration 

Combining (A 3)-(A 5 )  in (A l ) ,  we obtain 

The requirement that 8 be stationary with respect to  variations of h (Hamilton’s 
principle), 

then yields (2 .6) .  
It is evident from (A 1 )  and (A 7 )  that (A 6 )  may be regarded as the Lagrangian 

for a single-degree-of-freedom system in which x and 8 / p  are analogues of time and 
action. The corresponding Hamiltonian is 

The total derivative of S‘, qua function of h, h‘ and x, then is given by (cf. Landau 
& Lifshitz 1969) dH 2H p’ 

dx ax p 
- _ -  - ( h - H ) .  

Integrating (A 9 )  with respect to  x and invoking (1 .4) ,  which implies S‘ = 0 a t  x = 00, 

we obtain 
(A 10) 

which, in conjunction with (A 8 ) ,  implies (2 .7) .  
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Appendix B. Green-Naghdi model 
The Green-Naghdi model (Naghdi & Vongsarnpigoon 1985), which, in my view, 

implicitly assumes weak dispersion as in $2t  but does not assume weak nonlinearity 
( ( h - H I  Q H ) ,  yields (2.6), which is equivalent to Ertekin's (1984) equation (5.25). 
The assumptions of the upstream null condition (1.4) and a compact pressure 
distribution then lead to (3.2), which may be integrated without further approxim- 
ations to obtain counterparts of the results in $94 and 5. 

Considering first f < 1, we introduce 

E (a-  A )  ( A - d )  ( A - c ) .  (B 2b) 
The differential equation (B 2) may be integrated, subject to A = 1 a t  x = 0, to 

obtain a real, bounded solution if and only if the right-hand side, qua cubic in A, has 
three real zeros, which, in turn, requires 

8+20f2 -54- f (8+f2 ) f  = $(142) t@(F) ,  
24 1 s < E * = F  

where @ increases from @ ( O )  = 0 to @(1) = 1 (see figure 2). The solution then is 

a - d  
a - c  A=b+(a-&)cn2(xo-z;k) ,  k2=-, (B 4% b) 

with 

where cn ( ) is an elliptic cosine of modulus k, and the constant of integration zo is 
determined by A = 1 at x = 0. Note that the characteristic length L now is defined 
by (B 1 a )  and (B 5), rather than (4.3a), and that a and c, and hence p, are determined 
as functions of f and B by the identity between the 
(B 2b). 

The limiting values of /3 are given by 

and 

3 1 - f 2  
p = , ( 7 ) + 0 [ , , " ' , 2 ) 2 ]  

right-hand sides of (B 2a) and 

This suggests, and more detailed calculations confirm, that p is small (as has been 
assumed in $ 2) if and only if 1 - f 4 1,  in which case 

within 1 +0(1- $7, as in 94. 

approximation, but the exact invocation of (3.4b) yields 

8* = $( 1 - P):, /9 = %( 1 - P), ( B  7 a ,  b) 

The solution of (3.2) and (1.4) for f > 1 is given by (5.4) without further 

t Professor Naghdi (private communication) does not agree with this assertion. See also Miles 
& Salmon (1985). 
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FIGURE 2. The function @(F),  as defined by (B 3). 

in place of (5 .5b) .  Maximizing the right-hand side of (B 8), we obtain 

€* = $(F2-l)t@(l/ff), 

where @ is defined by (B 3). The counterpart of (B 5 )  is (cf. (B 6)) 

which is small if and only if F2 - 1 Q 1 .  

Appendix C. Transition between uniform flows 
The result (4.7) also may be derived t,hrough a slight variation of Rayleigh's (1914) 

analysis for a transition between two uniform levels. (Impulse +momentum, but not 
energy, is conserved in Rayleigh's calculation; the converse is true in the present 
calculation.) Following Lamb (1932, fj 187), but reversing the direction of flow, we 
let h+ = H and u+ = U be the upstream depth and velocity (positive to the left) in 
the reference frame of the force and let h- and u- be the corresponding downstream 
quantities. The equations of mass, momentum and energy then are 

h-u- = h+u+ = &, 
P&(u- -a+) = $g(h$ - hZ) - D ,  

(C 1) 

(C 2) 
p&($u"+gh-) = p & ( K + g h + ) .  (C 3) 

Substituting u- and u+ from (C 1 )  into (C 2) and (C 3) and eliminating & between the 
resulting equations, we obtain 
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(C 5 )  

Substituting D = i(E/F)2pgH2 from (1.8) and invoking s2 = (i)"." we obtain 

( l ~ + - h - ) ~  = ( ~ c z H ) ~  [l +O(a)] ,  

which is equivalent to ( 4 . 7 ~ ) ;  (4.7b) then follows from (C 1). 

side of (C 3), (C 4) becomes 
If energy dissipation is introduced by inserting the term - W on the right-hand 

which is equivalent to Rayleigh's result if D = 0. 
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